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2 Introduction

Most tutorials on complex topics are apparently written by very smart people whose goal is
to use as little space as possible and who assume that their readers already know almost as
much as the author does. This tutorial’s not like that. It’s more a manifestivus for the rest of
us. It’s about the mechanics of singular value decomposition, especially as it relates to some
techniques in natural language processing. It’s written by someone who knew zilch about
singular value decomposition or any of the underlying math before he started writing it,
and knows barely more than that now. Accordingly, it’s a bit long on the background part,
and a bit short on the truly explanatory part, but hopefully it contains all the information
necessary for someone who’s never heard of singular value decomposition before to be able
to do it.

3 Points and Space

A point is just a list of numbers. This list of numbers, or coordinates, specifies the point’s
position in space. How many coordinates there are determines the dimensions of that space.

For example, we can specify the position of a point on the edge of a ruler with a single
coordinate. The position of the two points 0.5cm and 1.2cm are precisely specified by single
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coordinates. Because we’re using a single coordinate to identify a point, we’re dealing with
points in one-dimensional space, or 1-space.

The position of a point anywhere in a plane is specified with a pair of coordinates; it takes
three coordinates to locate points in three dimensions. Nothing stops us from going beyond
points in 3-space. The fourth dimension is often used to indicate time, but the dimensions
can be chosen to represent whatever measurement unit is relevant to the objects we’re trying
to describe.

Generally, space represented by more than three dimensions is called hyperspace. You’ll
also see the term n-space used to talk about spaces of different dimensionality (e.g. 1-space,
2-space, ..., n-space).

For example, if I want a succinct way of describing the amount of food I eat in a given
day, I can use points in n-space to do so. Let the dimensions of this space be the following
food items:

Eggs Grapes Bananas Chickens Cans of Tuna
There are five categories, so we’re dealing with points in 5-space. Thus, the interpretation

of the point (3, 18, 2, 0.5, 1, ) would be “three eggs, eighteen grapes, two bananas, half a
chicken, one can of tuna”.

4 Vectors

For most purposes, points and vectors are essentially the same thing1, that is, a sequence of
numbers corresponding to measurements along various dimensions.

Vectors are usually denoted by a lower case letter with an arrow on top, e.g. x⃗. The
numbers comprising the vector are now called components, and the number of components
equals the dimensionality of the vector. We use a subscript on the vector name to refer to
the component in that position. In the example below, x⃗ is a 5-dimensional vector, x1 = 8,
x26, etc.

x⃗ =


8
6
7
5
3


Vectors can be equivalently represented horizontally to save space, e.g. x⃗ = [8, 6, 7, 5, 3] is
the same vector as above. More generally, a vector x⃗ with n-dimensions is a sequence of n
numbers, and component xi represents the value of x⃗ on the ith dimension.

1Technically, I think, a vector is a function that takes a point as input and returns as its value a point of
the same dimensionality.
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5 Matrices

A matrix is probably most familiar as a table of data, like Table 1, which shows the top 5
scorers on a judge’s scorecard in the 1997 Fitness International competition.

Contestant Round 1 Round 2 Round 3 Round 4 Total Place
Carol Semple-Marzetta 17 18 5 5 45 1
Susan Curry 42 28 30 15 115 3
Monica Brant 10 10 10 21 51 2
Karen Hulse 28 5 65 39 132 5
Dale Tomita 24 26 45 21 116 4

Table 1: 1997 Fitness International Scorecard. Source: Muscle & Fitness July 1997, p.139

A table consists of rows (the horizontal list of scores corresponding to a contestant’s
name), and columns (the vertical list of numbers corresponding to the scores for a given
round). What makes this table a matrix is that it’s a rectangular array of numbers. Written
as a matrix, Table 1 looks like this:

17 18 5 5 45 1
42 28 30 15 115 3
10 10 10 21 51 2
28 5 65 39 132 5
24 26 45 21 116 4


The size, or dimensions, of a matrix is given in terms of the number of rows by the number
of columns. This makes the matrix above a “five by six” matrix, written 5× 6 matrix.

We can generalize the descriptions made so far by using variables to stand in for the
actual numbers we’ve been using. Traditionally, a matrix in the abstract is named A. The
maximum number of rows is assigned to the variable m, and the number of columns is called
n. Matrix entries (also called elements or components) are denoted by a lower-case a, and a
particular entry is referenced by its row index (labeled i) and its column index (labeled j).
For example, 132 is the entry in row 4 and column 5 in the matrix above, so another way of
saying that would be a45 = 132. More generally, the element in the ith row and jth column
is labeled aij, and called the ij-entry or ij-component.

A little more formally than before, we can denote a matrix like this:

5.1 Matrix Notation

Let m, n be two integers ≥ 1. Let aij, i = 1, ...,m, j = 1, ..., n be mn numbers. An array of
numbers
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A =


a11 ... a1j ... a1n
. . .
ai1 ... aij ... ain
. . .

am1 ... amj ... amn


is an m× n matrix and the numbers aij are elements of A. The sequence of numbers

A(i) = (ai1, ..., ain)

is the ith row of A, and the sequence of numbers

A(j) = (a1j, ..., amj)

is the jth column of A.
Just as the distinction between points and vectors can blur in practice, so does the

distinction between vectors and matrices. A matrix is basically a collection of vectors. We
can talk about row vectors or column vectors. Or a vector with n components can be
considered a 1× n matrix.

For example, the matrix below is a word×document matrix which shows the number of
times a particular word occurs in some made-up documents. Typical accompanying descrip-

Doc 1 Doc 2 Doc 3
abbey 2 3 5
spinning 1 0 1
soil 3 4 1
stunned 2 1 3
wrath 1 1 4

Table 2: Word×document matrix for some made-up documents.

tions of this kind of matrix might be something like “high dimensional vector space model”.
The dimensions are the words, if we’re talking about the column vectors representing doc-
uments, or documents, if we’re talking about the row vectors which represent words. High
dimensional means we have a lot of them. Thus, “hyperspace document representation”
means a document is represented as a vector whose components correspond in some way to
the words in it, plus there are a lot of words. This is equivalent to “a document is represented
as a point in n-dimensional space.”
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6 Vector Terminology

6.1 Vector Length

The length of a vector is found by squaring each component, adding them all together, and

taking the square root of the sum. If v⃗ is a vector, its length is denoted by |⃗v|. More
concisely,

|⃗v| =

√√√√ n∑
i=1

v2i

For example, if v⃗ = [4, 11, 8, 10], then

|⃗v| =
√
42 + 112 + 82 + 102 =

√
301 = 17.35

6.2 Vector Addition

Adding two vectors means adding each component in v⃗1 to the component in the correspond-
ing position in v⃗2 to get a new vector. For example

[3, 2, 1,−2] + [2,−1, 4, 1] = [(3 + 2), (2− 1), (1 + 4), (−2 + 1)] = [5, 1, 5,−1]

More generally, if A = [a1, a2, ...an] and B = [b1, b2, ...bn], then A+B = [a1+b1, a2+b2, ...an+
bn].

6.3 Scalar Multiplication

Multiplying a scalar (real number) times a vector means multiplying every component by
that real number to yield a new vector. For instance, if v⃗ = [3, 6, 8, 4], then 1.5 ∗ v⃗ =
1.5 ∗ [3, 6, 8, 4] = [4.5, 9, 12, 6]. More generally, scalar multiplication means if d is a real
number and v⃗ is a vector [v1, v2, ..., vn], then d ∗ v⃗ = [dv1, dv2, ..., dvn].

6.4 Inner Product

The inner product of two vectors (also called the dot product or scalar product) defines
multiplication of vectors. It is found by multiplying each component in v⃗1 by the component
in v⃗2 in the same position and adding them all together to yield a scalar value. The inner
product is only defined for vectors of the same dimension. The inner product of two vectors
is denoted (v⃗1, v⃗2) or v⃗1 · v⃗2 (the dot product). Thus,

(x⃗, y⃗) = x⃗ · y⃗ =
n∑

i=1

xiyi

For example, if x⃗ = [1, 6, 7, 4] and y⃗ = [3, 2, 8, 3], then

x⃗ · y⃗ = 1(3) + 6(2) + 7(8) + 3(4) = 83
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6.5 Orthogonality

Two vectors are orthogonal to each other if their inner product equals zero. In two-
dimensional space this is equivalent to saying that the vectors are perpendicular, or that the
only angle between them is a 90◦ angle. For example, the vectors [2, 1,−2, 4] and [3,−6, 4, 2]
are orthogonal because

[2, 1,−2, 4] · [3,−6, 4, 2] = 2(3) + 1(−6)− 2(4) + 4(2) = 0

6.6 Normal Vector

A normal vector (or unit vector) is a vector of length 1. Any vector with an initial length >
0 can be normalized by dividing each component in it by the vector’s length. For example,
if v⃗ = [2, 4, 1, 2], then

|⃗v| =
√
22 + 42 + 12 + 22 =

√
25 = 5

Then u⃗ = [2/5, 4/5, 1/5, 1/5] is a normal vector because

|⃗u| =
√
(2/5)2 + (4/5)2 + (1/5)2 + (2/5)2 =

√
25/25 = 1

6.7 Orthonormal Vectors

Vectors of unit length that are orthogonal to each other are said to be orthonormal. For
example,

u⃗ = [2/5, 1/5,−2/5, 4/5]

and
v⃗ = [3/

√
65,−6/

√
65, 4/

√
65, 2/

√
65]

are orthonormal because

|⃗u| =
√
(2/5)2 + (1/5)2 + (−2/5)2 + (4/5)2 = 1

|⃗v| =
√
(3/

√
65)2 + (−6/

√
65)2 + (4/

√
65)2 + (2/

√
65)2 = 1

u⃗ · v⃗ =
6

5
√
65

− 6

5
√
65

− 8

5
√
65

+
8

5
√
65

= 0

6.8 Gram-Schmidt Orthonormalization Process

The Gram-Schmidt orthonormalization process is a method for converting a set of vectors
into a set of orthonormal vectors. It basically begins by normalizing the first vector under
consideration and iteratively rewriting the remaining vectors in terms of themselves minus a
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multiplication of the already normalized vectors. For example, to convert the column vectors
of

A =


1 2 1
0 2 0
2 3 1
1 1 0


into orthonormal column vectors

A =



√
6
6

√
2
6

2
3

0 2
√
2

3
−1
3√

6
3

0 0√
6
6

−
√
2

6
−2
3

 ,

first normalize v⃗1 = [1, 0, 2, 1]:

u⃗1 = [
1√
6
, 0,

2√
6
,
1√
6
].

Next, let

w⃗2 = v⃗2 − u⃗1 · v⃗2 ∗ u⃗1 = [2, 2, 3, 1]− [
1√
6
, 0,

2√
6
,
1√
6
] · [2, 2, 3, 1] ∗ [ 1√

6
, 0,

2√
6
,
1√
6
]

= [2, 2, 3, 1]− (
9√
6
) ∗ [ 1√

6
, 0,

2√
6
,
1√
6
]

= [2, 2, 3, 1]− [
3

2
, 0, 3,

3

2
]

= [
1

2
, 2, 0,

−1

2
]

Normalize w⃗2 to get

u⃗2 = [

√
2

6
,
2
√
2

3
, 0,

−
√
2

6
]

Now compute u⃗3 in terms of u⃗1 and u⃗2 as follows. Let

w⃗3 = v⃗3 − u⃗1 · v⃗3 ∗ u⃗1 − u⃗2 · v⃗3 ∗ u⃗2 = [
4

9
,
−2

9
, 0,

−4

9
]

and normalize w⃗3 to get

u⃗3 = [
2

3
,
−1

3
, 0,

−2

3
]

More generally, if we have an orthonormal set of vectors u⃗1, .., ⃗uk−1, then w⃗k is expressed
as

w⃗k = v⃗k −
k−1∑
i=1

u⃗i · v⃗k ∗ u⃗i

8
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7 Matrix Terminology

7.1 Square Matrix

A matrix is said to be square if it has the same number of rows as columns. To designate
the size of a square matrix with n rows and columns, it is called n-square. For example, the
matrix below is 3-square.

A =

 1 2 3
4 5 6
7 8 9


7.2 Transpose

The transpose of a matrix is created by converting its rows into columns; that is, row 1
becomes column 1, row 2 becomes column 2, etc. The transpose of a matrix is indicated
with a superscripted T , e.g. the transpose of matrix A is AT . For example, if

A =

[
1 2 3
4 5 6

]

then its transpose is

AT =

 1 4
2 5
3 6


7.3 Matrix Multiplication

It is possible to multiply two matrices only when the second matrix has the same number
of rows as the first matrix has columns. The resulting matrix has as many rows as the first
matrix and as many columns as the second matrix. In other words, if A is a m× n matrix
and B is a n× s matrix, then the product AB is an m× s matrix.

The coordinates of AB are determined by taking the inner product of each row of A and
each column in B. That is, if A1, ..., Am are the row vectors of matrix A, and B1, ..., Bs are
the column vectors of B, then abik of AB equals Ai ·Bk. The example below illustrates.

A =

[
2 1 4
1 5 2

]
B =

 3 2
−1 4
1 2

AB =

[
2 1 4
1 5 2

]  3 2
−1 4
1 2

 =

[
9 16
0 26

]

ab11 =
[
2 1 4

]  3
−1
1

 = 2(3) + 1(−1) + 4(1) = 9

9
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ab12 =
[
2 1 4

]  2
4
2

 = 2(4) + 1(4) + 4(2) = 16

ab21 =
[
1 5 2

]  3
−1
1

 = 1(3) + 5(−1) + 2(1) = 0

ab22 =
[
1 5 2

]  2
4
2

 = 1(2) + 5(4) + 2(2) = 26

7.4 Identity Matrix

The identity matrix is a square matrix with entries on the diagonal equal to 1 and all other
entries equal zero. The diagonal is all the entries aij where i =j, i.e., a11, a22, ..., amm. The
n-square identity matrix is denoted variously as In×n, In, or simply I. The identity matrix
behaves like the number 1 in ordinary multiplication, which mean AI = A, as the example
below shows.

A =

[
2 4 6
1 3 5

]
I =

 1 0 0
0 1 0
0 0 1

AI =

[
2 4 6
1 3 5

]  1 0 0
0 1 0
0 0 1

 =

ai11 =
[
2 4 6

]  1
0
0

 = 2(1) + 0(4) + 0(6) = 2

ai12 =
[
2 4 6

]  0
1
0

 = 2(0) + 4(1) + 6(0) = 4

ai13 =
[
2 4 6

]  0
0
1

 = 2(0) + 4(0) + 6(1) = 6

ai21 =
[
1 3 5

]  1
0
0

 = 1(1) + 3(0) + 5(0) = 1

10
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ai22 =
[
1 3 5

]  0
1
0

 = 1(0) + 3(1) + 5(0) = 3

ai23 =
[
1 3 5

]  0
0
1

 = 1(0) + 3(0) + 5(1) = 5

=

[
2 4 6
1 3 5

]

7.5 Orthogonal Matrix

A matrix A is orthogonal if AAT = ATA = I. For example,

A =

 1 0 0
0 3/5 −4/5
0 4/5 3/5


is orthogonal because

ATA =

 1 0 0
0 3/5 −4/5
0 4/5 3/5


 1 0 0
0 3/5 4/5
0 −4/5 3/5

 =

 1 0 0
0 1 0
0 0 1


7.6 Diagonal Matrix

A diagonal matrix A is a matrix where all the entries aiij are 0 when i ̸= j. In other words,
the only nonzero values run along the main dialog from the upper left corner to the lower
right corner:

A =


a11 0 ... 0
0 a22 0
. . .
0 ... amm



7.7 Determinant

A determinant is a function of a square matrix that reduces it to a single number. The
determinant of a matrix A is denoted |A| or det(A). If A consists of one element a, then
|A| = a; in other words if A = [6] then |A| = 6. If A is a 2× 2 matrix, then

11
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|A| =
∣∣∣∣∣ a b
c d

∣∣∣∣∣ = ad− bc.

For example, the determinant of

A =

[
4 1
1 2

]
is

|A| =
∣∣∣∣∣ 4 1
1 2

∣∣∣∣∣ = 4(2)− 1(1) = 7.

Finding the determinant of an n-square matrix for n > 2 can be done by recursively deleting
rows and columns to create successively smaller matrices until they are all 2× 2 dimensions,
and then applying the previous definition. There are several tricks for doing this efficiently,
but the most basic technique is called expansion by row and is illustrated below for a 3 ×
3 matrix. In this case we are expanding by row 1, which means deleting row 1 and successively
deleting columns 1, column 2, and column 3 to create three 2×2 matrices. The determinant
of each smaller matrix is multiplied by the entry corresponding to the intersection of the
deleted row and column. The expansion alternately adds and subtracts each successive
determinant. ∣∣∣∣∣∣∣

−1 4 3
2 6 4
3 −2 8

∣∣∣∣∣∣∣ = (−1)

∣∣∣∣∣ 6 4
−2 8

∣∣∣∣∣− (4)

∣∣∣∣∣ 2 4
3 8

∣∣∣∣∣+ (3)

∣∣∣∣∣ 2 6
3 −2

∣∣∣∣∣ =

−1(6 · 8− 4 · −2)− 4(2 · 8− 4 · 3) + 3(2 · −2− 3 · 6) =

−56− 16− 66 = −138

The determinant of a 4× 4 matrix would be found by expanding across row 1 to alternately
add and subtract 4 3 × 3 determinants, which would themselves be expanded to produce a
series of 2× 2 determinants that would be reduced as above. This procedure can be applied
to find the determinant of an arbitrarily large square matrix.

7.8 Eigenvectors and Eigenvalues

An eigenvector is a nonzero vector that satisfies the equation

Av⃗ = λv⃗

where A is a square matrix, λ is a scalar, and v⃗ is the eigenvector. λ is called an eigen-
value. Eigenvalues and eigenvectors are also known as, respectively, characteristic roots and
characteristic vectors, or latent roots and latent vectors.

12
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You can find eigenvalues and eigenvectors by treating a matrix as a system of linear
equations and solving for the values of the variables that make up the components of the
eigenvector. For example, finding the eigenvalues and corresponding eigenvectors of the
matrix

A =

[
2 1
1 2

]
means applying the above formula to get

Av⃗ = λv⃗ =

[
2 1
1 2

] [
x1

x2

]
= λ

[
x1

x2

]

in order to solve for λ, x1 and x2. This statement is equivalent to the system of equations

2x1 + x2 = λx1

x1 + 2x2 = λx2

which can be rearranged as
(2− λ)x1 + x2 = 0

x1 + (2− λ)x2 = 0

A necessary and sufficient condition for this system to have a nonzero vector [x1, x2] is that
the determinant of the coefficient matrix[

(2− λ) 1
1 (2− λ)

]

be equal to zero. Accordingly, ∣∣∣∣∣ (2− λ) 1
1 (2− λ)

∣∣∣∣∣ = 0

(2− λ)(2− λ)− 1 · 1 = 0

λ2 − 4λ+ 3 = 0

(λ− 3)(λ− 1) = 0

There are two values of λ that satisfy the last equation; thus there are two eigenvalues of
the original matrix A and these are λ1 = 3, λ2 = 1.

We can find eigenvectors which correspond to these eigenvalues by plugging λ back in
to the equations above and solving for x1 and x2. To find an eigenvector corresponding to
λ = 3, start with

(2− λ)x1 + x2 = 0

13



ROUGH DRAFT - BEWARE suggestions kirklbaker@gmail.com

and substitute to get
(2− 3)x1 + x2 = 0

which reduces and rearranges to
x1 = x2

There are an infinite number of values for x1 which satisfy this equation; the only restriction
is that not all the components in an eigenvector can equal zero. So if x1 = 1, then x2 = 1
and an eigenvector corresponding to λ = 3 is [1, 1].

Finding an eigenvector for λ = 1 works the same way.

(2− 1)x1 + x2 = 0

x1 = −x2

So an eigenvector for λ = 1 is [1,−1].

8 Singular Value Decomposition

Singular value decomposition (SVD) can be looked at from three mutually compatible points
of view. On the one hand, we can see it as a method for transforming correlated variables
into a set of uncorrelated ones that better expose the various relationships among the original
data items. At the same time, SVD is a method for identifying and ordering the dimensions
along which data points exhibit the most variation. This ties in to the third way of viewing
SVD, which is that once we have identified where the most variation is, it’s possible to find
the best approximation of the original data points using fewer dimensions. Hence, SVD can
be seen as a method for data reduction.

As an illustration of these ideas, consider the 2-dimensional data points in Figure 1.
The regression line running through them shows the best approximation of the original data
with a 1-dimensional object (a line). It is the best approximation in the sense that it is
the line that minimizes the distance between each original point and the line. If we drew a
perpendicular line from each point to the regression line, and took the intersection of those
lines as the approximation of the original datapoint, we would have a reduced representation
of the original data that captures as much of the original variation as possible. Notice that
there is a second regression line, perpendicular to the first, shown in Figure 2. This line
captures as much of the variation as possible along the second dimension of the original
data set. It does a poorer job of approximating the orginal data because it corresponds to a
dimension exhibiting less variation to begin with. It is possible to use these regression lines
to generate a set of uncorrelated data points that will show subgroupings in the original data
not necessarily visible at first glance.

These are the basic ideas behind SVD: taking a high dimensional, highly variable set of
data points and reducing it to a lower dimensional space that exposes the substructure of the

14
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Figure 1: Best-fit regression line reduces data from two dimensions into one.

original data more clearly and orders it from most variation to the least. What makes SVD
practical for NLP applications is that you can simply ignore variation below a particular
threshhold to massively reduce your data but be assured that the main relationships of
interest have been preserved.

8.1 Example of Full Singular Value Decomposition

SVD is based on a theorem from linear algebra which says that a rectangular matrix A can
be broken down into the product of three matrices - an orthogonal matrix U , a diagonal
matrix S, and the transpose of an orthogonal matrix V . The theorem is usually presented
something like this:

Amn = UmmSmnV
T
nn

where UTU = I, V TV = I; the columns of U are orthonormal eigenvectors of AAT , the
columns of V are orthonormal eigenvectors of ATA, and S is a diagonal matrix containing
the square roots of eigenvalues from U or V in descending order.

The following example merely applies this definition to a small matrix in order to compute
its SVD. In the next section, I attempt to interpret the application of SVD to document
classification.

Start with the matrix

A =

[
3 1 1
−1 3 1

]

15
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Figure 2: Regression line along second dimension captures less variation in original data.

In order to find U , we have to start with AAT . The transpose of A is

AT =

 3 −1
1 3
1 1


so

AAT =

[
3 1 1
−1 3 1

]  3 −1
1 3
1 1

 =

[
11 1
1 11

]

Next, we have to find the eigenvalues and corresponding eigenvectors of AAT . We know that
eigenvectors are defined by the equation Av⃗ = λv⃗, and applying this to AAT gives us[

11 1
1 11

] [
x1

x2

]
= λ

[
x1

x2

]

We rewrite this as the set of equations

11x1 + x2 = λx1

x1 + 11x2 = λx2

and rearrange to get
(11− λ)x1 + x2 = 0

16
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x1 + (11− λ)x2 = 0

Solve for λ by setting the determinant of the coefficient matrix to zero,∣∣∣∣∣ (11− λ) 1
1 (11− λ)

∣∣∣∣∣ = 0

which works out as
(11− λ)(11− λ)− 1 · 1 = 0

(λ− 10)(λ− 12) = 0

λ = 10, λ = 12

to give us our two eigenvalues λ = 10, λ = 12. Plugging λ back in to the original equations
gives us our eigenvectors. For λ = 10 we get

(11− 10)x1 + x2 = 0

x1 = −x2

which is true for lots of values, so we’ll pick x1 = 1 and x2 = −1 since those are small and
easier to work with. Thus, we have the eigenvector [1,−1] corresponding to the eigenvalue
λ = 10. For λ = 12 we have

(11− 12)x1 + x2 = 0

x1 = x2

and for the same reason as before we’ll take x1 = 1 and x2 = 1. Now, for λ = 12 we have the
eigenvector [1, 1]. These eigenvectors become column vectors in a matrix ordered by the size
of the corresponding eigenvalue. In other words, the eigenvector of the largest eigenvalue
is column one, the eigenvector of the next largest eigenvalue is column two, and so forth
and so on until we have the eigenvector of the smallest eigenvalue as the last column of our
matrix. In the matrix below, the eigenvector for λ = 12 is column one, and the eigenvector
for λ = 10 is column two. [

1 1
1 −1

]
Finally, we have to convert this matrix into an orthogonal matrix which we do by applying
the Gram-Schmidt orthonormalization process to the column vectors. Begin by normalizing
v⃗1.

u⃗1 =
v⃗1
⃗|v1|

=
[1, 1]√
12 + 12

=
[1, 1]√

2
= [

1√
2
,
1√
2
]

Compute
w⃗2 = v⃗2 − u⃗1 · v⃗2 ∗ u⃗1 =

17
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[1,−1]− [
1√
2
,
1√
2
] · [1,−1] ∗ [ 1√

2
,
1√
2
] =

[1,−1]− 0 ∗ [ 1√
2
,
1√
2
] = [1,−1]− [0, 0] = [1,−1]

and normalize

u⃗2 =
w⃗2

⃗|w2|
= [

1√
2
,
−1√
2
]

to give

U =

[ 1√
2

1√
2

1√
2

−1√
2

]

The calculation of V is similar. V is based on ATA, so we have

ATA =

 3 −1
1 3
1 1

 [
3 1 1
−1 3 1

]
=

 10 0 2
0 10 4
2 4 2


Find the eigenvalues of ATA by 10 0 2

0 10 4
2 4 2


 x1

x2

x3

 = λ

 x1

x2

x3


which represents the system of equations

10x1 + 2x3 = λx1

10x2 + 4x3 = λx2

2x1 + 4x2 + 2x3 = λx2

which rewrite as
(10− λ)x1 + 2x3 = 0

(10− λ)x2 + 4x3 = 0

2x1 + 4x2 + (2− λ)x3 = 0

which are solved by setting ∣∣∣∣∣∣∣
(10− λ) 0 2

0 (10− λ) 4
2 4 (2− λ)

∣∣∣∣∣∣∣ = 0

18
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This works out as

(10− λ)

∣∣∣∣∣ (10− λ) 4
4 (2− λ)

∣∣∣∣∣+ 2

∣∣∣∣∣ 0 (10− λ)
2 4

∣∣∣∣∣ =
(10− λ)[(10− λ)(2− λ)− 16] + 2[0− (20− 2λ)] =

λ(λ− 10)(λ− 12) = 0,

so λ = 0, λ = 10, λ = 12 are the eigenvalues for ATA. Substituting λ back into the original
equations to find corresponding eigenvectors yields for λ = 12

(10− 12)x1 + 2x3 = −2x1 + 2x3 = 0

x1 = 1, x3 = 1

(10− 12)x2 + 4x3 = −2x2 + 4x3 = 0

x2 = 2x3

x2 = 2

So for λ = 12, v⃗1 = [1, 2, 1]. For λ = 10 we have

(10− 10)x1 + 2x3 = 2x3 = 0

x3 = 0

2x1 + 4x2 = 0

x1 = −2x2

x1 = 2, x2 = −1

which means for λ = 10, v⃗2 = [2,−1, 0]. For λ = 0 we have

10x1 + 2x3 = 0

x3 = −5

10x1 − 20 = 0

x2 = 2

2x1 + 8− 10 = 0

x1 = 1

which means for λ = 0, v⃗3 = [1, 2,−5]. Order v⃗1, v⃗2, and v⃗3 as column vectors in a matrix
according to the size of the eigenvalue to get 1 2 1

2 −1 2
1 0 −5


19
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and use the Gram-Schmidt orthonormalization process to convert that to an orthonormal
matrix.

u⃗1 =
v⃗1
⃗|v1|

= [
1√
6
,
2√
6
,
1√
6
]

w⃗2 = v⃗2 − u⃗1 · v⃗2 ∗ u⃗1 = [2,−1, 0]

u⃗2 =
w⃗2

⃗|w2|
= [

2√
5
,
−1√
5
, 0]

w⃗3 = v⃗3 − u⃗1 · v⃗3 ∗ u⃗1 − u⃗2 · v⃗3 ∗ u⃗2 = [
−2

3
,
−4

3
,
10

3
]

u⃗3 =
w⃗3

⃗|w3|
= [

1√
30

,
2√
30

,
−5√
30

]

All this to give us

V =


1√
6

2√
5

1√
30

2√
6

−1√
5

2√
30

1√
6

0 −5√
30


when we really want its transpose

V T =


1√
6

2√
6

1√
6

2√
5

−1√
5

0
1√
30

2√
30

−5√
30


For S we take the square roots of the non-zero eigenvalues and populate the diagonal with
them, putting the largest in s11, the next largest in s22 and so on until the smallest value
ends up in smm. The non-zero eigenvalues of U and V are always the same, so that’s why
it doesn’t matter which one we take them from. Because we are doing full SVD, instead of
reduced SVD (next section), we have to add a zero column vector to S so that it is of the
proper dimensions to allow multiplication between U and V . The diagonal entries in S are
the singular values of A, the columns in U are called left singular vectors, and the columns
in V are called right singular vectors.

S =

[ √
12 0 0

0
√
10 0

]
Now we have all the pieces of the puzzle

Amn = UmmSmnV
T
nn =

[ 1√
2

1√
2

1√
2

−1√
2

] [ √
12 0 0

0
√
10 0

] 
1√
6

2√
6

1√
6

2√
5

−1√
5

0
1√
30

2√
30

−5√
30

 =

 √
12√
2

√
10√
2

0
√
12√
2

−
√
10√
2

0




1√
6

2√
6

1√
6

2√
5

−1√
5

0
1√
30

2√
30

−5√
30

 =

[
3 1 1
−1 3 1

]
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8.2 Example of Reduced Singular Value Decomposition

Reduced singular value decomposition is the mathematical technique underlying a type of
document retrieval and word similarity method variously called Latent Semantic Indexing
or Latent Semantic Analysis. The insight underlying the use of SVD for these tasks is
that it takes the original data, usually consisting of some variant of a word×document
matrix, and breaks it down into linearly independent components. These components are
in some sense an abstraction away from the noisy correlations found in the original data
to sets of values that best approximate the underlying structure of the dataset along each
dimension independently. Because the majority of those components are very small, they
can be ignored, resulting in an approximation of the data that contains substantially fewer
dimensions than the original. SVD has the added benefit that in the process of dimensionality
reduction, the representation of items that share substructure become more similar to each
other, and items that were dissimilar to begin with may become more dissimilar as well. In
practical terms, this means that documents about a particular topic become more similar
even if the exact same words don’t appear in all of them.

As we’ve already seen, SVD starts with a matrix, so we’ll take the following word×
document matrix as the starting point of the next example.

A =


2 0 8 6 0
1 6 0 1 7
5 0 7 4 0
7 0 8 5 0
0 10 0 0 7


Remember that to compute the SVD of a matrix A we want the product of three matrices
such that

A = USV T

where U and V are orthonormal and S is diagonal. The column vectors of U are taken from
the orthonormal eigenvectors of AAT , and ordered right to left from largest corresponding
eigenvalue to the least. Notice that

AAT =


2 0 8 6 0
1 6 0 1 7
5 0 7 4 0
7 0 8 5 0
0 10 0 0 7




2 1 5 7 0
0 6 0 0 10
8 0 7 8 0
6 1 4 5 0
0 7 0 0 7

 =


104 8 90 108 0
8 87 9 12 109
90 9 90 111 0
108 12 111 138 0
0 109 0 0 149


is a matrix whose values are the dot product of all the terms, so it is a kind of dispersion
matrix of terms throughout all the documents. The singular values (eigenvalues) of AAT are

λ = 321.07, λ = 230.17, λ = 12.70, λ = 3.94, λ = 0.12
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which are used to compute and order the corresponding orthonormal singular vectors of U .

U =


−0.54 0.07 0.82 −0.11 0.12
−0.10 −0.59 −0.11 −0.79 −0.06
−0.53 0.06 −0.21 0.12 −0.81
−0.65 0.07 −0.51 0.06 0.56
−0.06 −0.80 0.09 0.59 0.04


This essentially gives a matrix in which words are represented as row vectors containing
linearly independent components. Some word cooccurence patterns in these documents are
indicated by the signs of the coefficients in U . For example, the signs in the first column
vector are all negative, indicating the general cooccurence of words and documents. There
are two groups visible in the second column vector of U : car and wheel have negative
coefficients, while doctor, nurse, and hospital are all positive, indicating a grouping in which
wheel only cooccurs with car. The third dimension indicates a grouping in which car, nurse,
and hospital occur only with each other. The fourth dimension points out a pattern in
which nurse and hospital occur in the absence of wheel, and the fifth dimension indicates a
grouping in which doctor and hospital occur in the absence of wheel.

Computing V T is similar. Since its values come from orthonormal singular vectors of
ATA, arranged right to left from largest corresponding singular value to the least, we have

ATA =


79 6 107 68 7
6 136 0 6 112
107 0 177 116 0
68 6 116 78 7
7 112 0 7 98


which contains the dot product of all the documents. Applying the Gram-Schmidt orthonor-
malization process and taking the transpose yields

V T =


−0.46 0.02 −0.87 −0.00 0.17
−0.07 −0.76 0.06 0.60 0.23
−0.74 0.10 0.28 0.22 −0.56
−0.48 0.03 0.40 −0.33 0.70
−0.07 −0.64 −0.04 −0.69 −0.32


S contains the square roots of the singular values ordered from greatest to least along its
diagonal. These values indicate the variance of the linearly independent components along
each dimension. In order to illustrate the effect of dimensionality reduction on this data set,
we’ll restrict S to the first three singular values to get

S =

 17.92 0 0
0 15.17 0
0 0 3.56


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In order for the matrix multiplication to go through, we have to eliminate the corresponding
row vectors of U and corresponding column vectors of V T to give us an approximation of A
using 3 dimensions instead of the original 5. The result looks like this.

Â =
−0.54 0.07 0.82
−0.10 −0.59 −0.11
−0.53 0.06 −0.21
−0.65 0.07 −0.51
−0.06 −0.80 0.09


 17.92 0 0

0 15.17 0
0 0 3.56


 −0.46 0.02 −0.87 −0.00 0.17
−0.07 −0.76 0.06 0.60 0.23
−0.74 0.10 0.28 0.22 −0.56



=


2.29 −0.66 9.33 1.25 −3.09
1.77 6.76 0.90 −5.50 −2.13
4.86 −0.96 8.01 0.38 −0.97
6.62 −1.23 9.58 0.24 −0.71
1.14 9.19 0.33 −7.19 −3.13


In practice, however, the purpose is not to actually reconstruct the original matrix but

to use the reduced dimensionality representation to identify similar words and documents.
Documents are now represented by row vectors in V , and document similarity is obtained
by comparing rows in the matrix V S (note that documents are represented as row vectors
because we are working with V , not V T ). Words are represented by row vectors in U , and
word similarity can be measured by computing row similarity in US.

Earlier I mentioned that in the process of dimensionality reduction, SVD makes similar
items appear more similar, and unlike items more unlike. This can be explained by looking
at the vectors in the reduced versions of U and V above. We know that the vectors contain
components ordered from most to least amount of variation accounted for in the original
data. By deleting elements representing dimensions which do not exhibit meaningful vari-
ation, we effectively eliminate noise in the representation of word vectors. Now the word
vectors are shorter, and contain only the elements that account for the most significant cor-
relations among words in the original dataset. The deleted elements had the effect of diluting
these main correlations by introducing potential similarity along dimensions of questionable
significance.
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